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Synopsis 

Equations describing the sorption kinetics of asymmetric membranes composed of AB and ABC 
laminate slabs in finite and in semi-infinite well-stirred baths are presented, and some properties 
of these systems are discussed. 

INTRODUCTION 

Equations have been developed for diffusion from a well-stirred finite bath 
into a homogeneous ~ l a b l - ~  which can be used to evaluate diffusion and solubility 
 coefficient^^^; this work has been extended to include symmetric ABA laminate 
slabs.7 Equations for diffusion from a well-stirred semi-infinite bath into a 
homogeneous slab, a symmetric ABA laminate slab, and an asymmetric AB 
laminate slab are also available.2,8 The purpose of this paper is to extend the 
development to describe sorption kinetics for the AB laminate slab in a well- 
stirred finite bath and for the ABC laminate slab in both a well-stirred finite bath 
and a well-stirred semi-infinite bath. 

DIFFUSION EQUATIONS 

AB Laminate in a Finite Bath 

The membrane is a slab comprising lamina A of thickness a and lamina B of 
thickness b in perfect contact a t  x = 0, where x is the distance coordinate normal 
to the interface. The solute concentration c in the well-stirred bath of volume 
V is initially co. The initial concentrations in the layers A and B are respectively 
C6 and C i  and are uniform corresponding to equilibrium with a bath concen- 
tration ci.  Equilibrium is maintained at each of the interfaces according to the 
following relations: CA = C K A  at  x = -a; CA = C B K  at  x = 0; and CB = C K B  at  
x = b; where K A ,  K ,  and K B  are constants. The diffusion coefficients for the 
respective laminae are D A  and DB. 

The differential equations describing the diffusional transport are 
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The initial and boundary conditions for the system are 

CA (-a,O) = ci CB(b,O) = cg 
CA(X,O) = CA, -a < x d 0 CB(X,O) = Cb, 0 d x < b (2) 

(5) bCA 
62 ( - dr  ) x = - a  - (2)x=b = & ($34 

where 62 = DA/DB, H B  = KBVB/V,  and V B  is the volume of lamina B. 

set of eqs. (1)-(5) which can be expressed as 
Application of the Laplace transform methodg provides the solution to the 

m 

Cz(x,t) = Cf + (Cf - C;) C I , ( x )  exp (-DB R:t/b2) (6) 

with I = A Gr B. The concentration of diffusant in the laminae at equilibrium 
Cf is given by 

n=l 

with H A  = KAVA/V = XKHB. Also, 

A , ( x )  = ~ { ( C O S  a,  - cos R,) sin (anXIa) 
+ (sin 01, + 6K sin Rn) cos (a,Xla))lU, (8) 

Bn(x )  = 2{6K (COS an - cos R,) sin (R,xlb) 
+ (sin a, + 6K sin Rn) cos (Rnxlb)JIUn (9) 

U, = 6 K 8 ,  [(A/&) sin a, - sin R,] - 6K8;(cos a,  - cos Rn) 
+ +, [( X/6) cos a, + 6K cos R,] 

+ +.(sin a, + 6K sin R,) 
+ 6K [ ( H A  + H B )  sin R, cos a, + ( ~ K H B  

+ HA/6K) cos R, sin a,] (10) 

where 

a, = R, XI6 

8, = H B  cos R, - R, sin Rn 

0;= - +, - sinR, 

+, = H B  sin R, + R, cos Rn 

+: = 8, + cos R, 

A = a/b = VA/VB 
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The coefficients R, are the nonzero positive roots of 

6 K 8  (cos a - cos R )  - @ (sin a + 6 K sin R )  
+ ~ K H B  (cos a cos R - 6K sin a sin R - 1) = 0 (12) 

The quantity usually measured is the concentration of diffusant in the finite bath; 
using C K A  = CA and solving eq. (6) for x = -a, one obtains 

m 

c ( t )  = cf + (co - ci) c 2, exp (-DBRat/b2) (13) 
n = l  

where 

2, = 2(6K sin R, cos a,, + cos Rn sin a,)/U, (14) 
The fractional change of the diffusant concentration remaining in the bath is 
given by 

with 

X ,  = 2, (1 + H A  + H B ) / ( H A  + H B )  
At large t ,  the first term in eq. (15) dominates, and the expression reduces to 

In M ( t )  = In X I  - DBRTt/b2 

(16) 

(17) 

ABC Laminate in a Finite Bath 

The slab of thickness (a + 1) comprises three laminae, A, B, and C, of thickness 
a, b, and 1 - b ,  respectively. Perfect contact is maintained between laminae A 
and B at  x = 0 and between B and C at  x = b. Initially the slab is in equilibrium 
with a well-stirred finite bath of volume V with diffusant concentrations of ci, 
Ck, Cg, and C& in the bath and laminae A, B, and C, respectively. To initiate 
the experiment, the bath concentration is changed from c i  to c0 at t = 0. 
Equilibrium is maintained at each phase interface throughout, described by CKA 
= CA at x = -a; CA = CBK at x = 0; CC = CBK* at x = b; and cKc  = CC at x = 
1;  also C K B  = Cg. The diffusion coefficients DA, DB,  and DC in the respective 
laminae are constant. 

The differential equations describing transport are given by eq. (1) with the 
additional equation 

The initial and boundary conditions are 
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with 62 = DA/DB and (6*)2 = Dc/DB. 
Application of the Laplace transform method provides the solution to the 

problem in the form of eq. (6), where I now denotes A, B, or C and C f .  The final 
or equilibrium concentrations of diffusant in the laminae are given by 

( 2 2 )  C f  = [Cp + C;  ( H A  + H B  + H c ) ] / ( l +  H A  + H B  + H c )  
with HI = KIVI /V .  Also, 

A n ( X )  = [FA sin (anx /U)  + GA cos (CU,X/U)] /W~ (23) 

(24) 

(25 )  
with X = d b ,  X* = ( 1  - b)/b,  a, = R,X/6, and Pn* = R,(X* + l)/S*. The re- 
maining coefficients are given by 

F A  = sin Rn sin a,* - 6*K* cos R, cos a,* + F*K* cos a, (26)  

G A  = 6K6*K* sin R, cos a,* + 6K cos R, sin a,* + 6*K* sin a, (27)  

F B  = ~ K F A  GB = G A  (28) 

B , ( x )  = [FB sin (Rnxlb) + Gg cos (R,x:/b)]/W, 

Cn(X) = [Fc sin (Pn*X/1) + G c  cos (P,*x:/l)]/W, 

F c  = -6K cos on* 
+ 6K [COS Rn cos (Rn/6*) + 6*K* sin Rn sin (Rn/6*)] cos a, 

- [sin R, cos (R,/6*) - 6*K* cos R, sin (R,/6*)] sin a, (29)  
G c  = 6K sin On* - 6K [cos R, sin (R,/6*) - 6*K* sin R, cos (R,/6*)] 

and 

W ,  = (-HB 6*K* (6*K* + KX + A*/&*) sin R, sin a, 

X cos a, + [sin R, sin (R,/6*) + 6*K* cos R, cos (R,/6*)] sin a, (30) 

+ H B  6*K* (6*K*X/6 + 6K6*K* + 6KX*/6*) cos R, cos a,  
- [A; + GK(K*X* + l)r,] sin R, 

+ [(K*X* + 1)An + 6KI'i] cos R,) sin a,* 
+ (HB 6*K* [X/6 + GK(K*X* + l ) ]  sin R, cos an 

+ H B  6*K* (1 + KX + A*/&*) cos R, sin a, 
+ [6K6* K * r ;  + (6*K* + X*/6*)An] sin Rn 

+ [6*K* A; + 6K(6*K* + A*/6*)rn] cos R,! cos an* 

+ 6*K* {(r; - An X/6) sin an + (I', X/6 - A'J cos a,] (31) 
where 

an* = R, X*/6* 

A, = 6K H B  cos a, - Rn sin a, 

rn = 6K H B  sin a, + R, cos a, 



SORPTION BY ASYMMETRIC MEMBRANES 1161 

A; = -rn - sin a, 

r; = A, + cos a, 

and the R ,  are the nonzero positive roots of 

-6K2 H B  6*K* - K6*K* ( - r s in  a + A cos a)  
- (KHB 6*2K*2 sin a cos R + K A sin R 

+ 6K2 H B  6*2K*2 cos a sin R 
+ 6 K 2 r  cos R )  sin a* 

- ( K H B  6*K* sin a sin R - K6*K* A cos R 
- 6K2 H B  6*K* cos a cos R + 6K26*K* J? sin R )  cos a* = 0 (33) 

Solving eq. (6 )  for x = -a and using C K A  = CA, one obtains eq. (13) for the con- 
centration of diffusant in the bath with 

2, = 2(6*K* cos (R,X*/K*) [6K cos an sin Rn + cos Rn sin an] 
+ sin (R,X*/K*) [6K cos R,  cos a, - sin R,  sin an]l/Wn (34) 

The reduced concentration in the bath is given by eq. (15) with 

X ,  = Z,(1+ H A  + H B  + H ~ ) / ( H A  + H B  + H c )  (35) 
As before, for large t eq. (15) reduces to eq. (17) with X, given by eq. (35). 

ABC Laminate in a Semi-Infinite Bath 

The system differs from the previous case in that the finite bath is replaced 
by a semi-infinite bath so that the bath concentration remains constant at  co, 
as do the concentrations in the two membrane surfaces in contact with the bath, 
i.e., C ~ ( - - a , t )  = C i  and Cc(Z,t) = Ct .  

The diffusive transport is described by eqs. (1) and (18) with the following 
initial and boundary conditions: 

CA(x,O) = c i  -a < x d 0 

CB(x,o) = cg 0 d x d b (36) 

CC(X,O) = C& b 6 x < 1 

C A ( - a , t )  = cg c c ( l , t )  = ct t 3 0 (37) 

C ~ ( 0 , t )  = KCB(O,~)  Cc(b , t )  = K * c ~ ( b , t )  t 3 0 (38) 

The Laplace transform method gives the solutions 
m 

C ~ ( x , t )  = Cf' + (C: - C i )  C 1 , ( x )  exp (-DB RZt/b2) (40) 
n = l  

where I = A, B, or C and 

A , ( x )  = 2{(-An sin on* - Z n  cos on* + 6*K* cos a,) sin (a,  x/u) 
+ (6K \k, sin on* + 6K Qn cos Pn* + 6*K* sin a,) cos ( a n X / U ) } / S n  (41) 

I B , ( x )  = 2 [(-A, sin on* - G, cos on* + 6*K* cos a,) 6K sin (R,x/b) 
+ (6K 'k, sin on* + 6K Q ,  cos on* + 6*K* sin a,) cos ( R , x / b ) ] / S ,  (42) 
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C n ( X )  = 2 [(A, sin a,  + 6K \kn cos a, - 6K cos on*) sin (&*x/I )  
+ ( E n  sin a, + 6K Qn cos a, + 6K sin &*) cos (Pn*~/l)] lSn (43) 

S ,  = R,{[(6K + X/6)A, - (KX*6/6*)Qn] cos a, sin ,8,* 
+ [ (A* - l)A,/6* - (6K + l)Q,] sin a, sin p,* 

+ [(6K + X/6)Z, + (KX* &/&*)@,I cos a, cos &* (44) 

with 

A, = 6*K* cos R, sin (R,/6*) - sin R, cos (R,/6*) 

Q, = 6*K* sin R, cos (R,/6*) - cos R, sin (R,/6*) 

Z n  = 6*K* cos R, cos (R,/6*) + sin R, sin (R,/6*) 

\En = 6*K* sin R, sin (R,/6*) + cos R, cos (R,/6*) 

(45) 

(46) 

(47) 

(48) 

The R, are the nonzero positive roots of 

sin a (A sin /3* + ," cos p*)  + 6K cos a (\k sin ,8* + Q cos p*)  = 0 (49) 

The increase in the amount of diffusant in the membrane at time t over the initial 
amount is given by 

and the final or equilibrium value of M ( t )  is given by 

Mf = (CX - CA)U + ( C i  - Cb)b + (CE - C k ) ( l  - b )  (51) 
where C& is the concentration in B in equilibrium with the bath concentration 
co. The reduced fractional change in the diffusant mass in the membrane is 

1 - ( M ( t ) / M f )  = [-1/(KX + K*X* + l ) ]  2 (KAn + B, + K*Cn) 
n = l  

X exp ( - D ~ R i t / b ~ )  (52) 

where 

A, = 26[(A, sin on* + Z, cos Pn* - 6*K* cos a,) (cos a, - 1) 
+ (6K \k, sin on* + 6K Q, cos f i n *  + 6*K* sin a,) sin an]/RnSn (53) 

B, = 2[(An sin on* + En cos on* - 6*K* cos a,) GK(cos R, - 1) 
+ (6K \k, sin Pn* + 6K Q, cos on* + 6*K* sin a,) sin R,]/R,S, (54) 

C, = 26* ([A, sin 01, + 6K 9, cos a, - 6K cos on*] [COS &* - cos (Rn/6*)] 
+ [Z, sin a, + 6K Q ,  cos a, + 6*K* sin on*] 

X [sin ,&* - sin (R,/G*)]]/R,S, (55) 
A t  large t the first term in eq. (52) dominates, and the expression reduces to 

In [l - ( M ( t ) / M f ) ]  = In [-(KAl + B1 + K*Cl)/(KX + K*X* + l ) ]  
- DBR;t/b2 (56) 
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DISCUSSION 

In principle it should be possible to determine the K I  and DI  of, for example, 
the AB laminate in a finite bath from the transient and equilibrium sorption 
behavior of two samples with different values of the thickness ratio X = a/b.  
From eq. (7) it follows that 

(57) 

so that two equilibrium measurements provide HA, H B ,  K A ,  and K B ,  provided 
X has been determined. From the limiting slope of In M ( t )  vs. t ,  the product 
DBRi is obtained according to eq. (17). To proceed further and calculate both 
DB and DA, it is first necessary to determine iteratively values of R1 and 6 which 
satisfy both eqs. (12) and (16). This procedure is possible with a computer, but 
the degree of accuracy is likely to be low as summations with many terms in- 
volved. 

If K B  and D B  have been determined independently, then the corresponding 
parameters for the other lamina, K,  and D,, follow more directly. Thus, a single 
equilibrium sorption suffices for the measurement of K A  and H A  using the known 
values of K B  and H B  in eq. (57). From the limiting slope of In M ( t )  vs. t ,  one 
obtains R and 6, and hence D A  can be determined iteratively from eq. (12). 

The greater value of the equations lies in their use to predict the transient and 
equilibrium sorption behavior of a laminate membrane when the DI and K I  
values are known for each of the laminae. Once again using the AB laminate 
membrane in a finite bath as an example, H A  and H B  are calculated from the K I ,  
the membrane dimensions, and the bath volume. As 6 is also known, the R, can 
be determined iteratively from eq. (12) and M ( t )  evaluated from eq. (15). Re- 
striction to the region of large t requires only R1 and eq. (17). The concentration 
profiles, at  least in the later stages of sorption where fewer terms are required 
in the summation, can be calculated from eq. (6). The same procedure can be 
applied to the ABC laminate, although it becomes necessarily more lengthy. 

(cf  - c 0 ) / ( c i  - ~ f )  = H A  + H B  = (1 + XK)HB 
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